Convergence acceleration of preconditioned conjugate gradient solver based on error vector sampling for a sequence of linear systems

Author:

Iwashita Takeshi1ORCID,Ikehara Kota2,Fukaya Takeshi1,Mifune Takeshi3

Affiliation:

1. Information Initiative Center Hokkaido University Sapporo Japan

2. Graduate School of Information Science and Technology Hokkaido University Sapporo Japan

3. Graduate School of Engineering Kyoto University Kyoto Japan

Abstract

AbstractIn this article, we focus on solving a sequence of linear systems that have identical (or similar) coefficient matrices. For this type of problem, we investigate subspace correction (SC) and deflation methods, which use an auxiliary matrix (subspace) to accelerate the convergence of the iterative method. In practical simulations, these acceleration methods typically work well when the range of the auxiliary matrix contains eigenspaces corresponding to small eigenvalues of the coefficient matrix. We develop a new algebraic auxiliary matrix construction method based on error vector sampling in which eigenvectors with small eigenvalues are efficiently identified in the solution process. We use the generated auxiliary matrix for convergence acceleration in the following solution step. Numerical tests confirm that both SC and deflation methods with the auxiliary matrix can accelerate the solution process of the iterative solver. Furthermore, we examine the applicability of our technique to the estimation of the condition number of the coefficient matrix. We also present the algorithm of the preconditioned conjugate gradient method with condition number estimation.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3