Fast and scalable inference for spatial extreme value models

Author:

Chen Meixi1ORCID,Ramezan Reza1ORCID,Lysy Martin1ORCID

Affiliation:

1. Department of Statistics and Actuarial Science University of Waterloo Waterloo Canada

Abstract

AbstractThe generalized extreme value (GEV) distribution is a popular model for analyzing and forecasting extreme weather data. To increase prediction accuracy, spatial information is often pooled via a latent Gaussian process (GP) on the GEV parameters. Inference for GEV‐GP models is typically carried out using Markov Chain Monte Carlo (MCMC) methods, or using approximate inference methods such as the integrated nested Laplace approximation (INLA). However, MCMC becomes prohibitively slow as the number of spatial locations increases, whereas INLA is applicable in practice only to a limited subset of GEV‐GP models. In this article, we revisit the original Laplace approximation for fitting spatial GEV models. In combination with a popular sparsity‐inducing spatial covariance approximation technique, we show through simulations that our approach accurately estimates the Bayesian predictive distribution of extreme weather events, is scalable to several thousand spatial locations, and is several orders of magnitude faster than MCMC. A case study in forecasting extreme snowfall across Canada is presented.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3