Development of improved finite element formulations for pile group behavior analysis under cyclic loading

Author:

Wan Jian‐Hong12,Jiang Shui‐Hua1ORCID,Li Xue‐You23ORCID,Chang Zhilu1

Affiliation:

1. School of Infrastructure Engineering Nanchang University Nanchang China

2. State Key Laboratory for Tunnel Engineering & School of Civil Engineering Sun Yat‐Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai P. R. China

3. Guangdong Key Laboratory of Marine Civil Engineering Guangzhou P. R. China

Abstract

AbstractThe effect of cyclic loading is an essential factor leading to progressive soil strength degradation. Therefore, a comprehensive analysis of the pile‐soil system behavior under cyclic loading is required to ensure the stability of pile group. There is room for improvement in the inherent constraint of the conventional numerical model in terms of approximating the soil resistance distribution along the pile by point loads at element nodes, necessitating a specific element that integrates considerations of pile group effect and cyclic loading within a unified framework. This study aims to develop a newly specific type of element for efficiently predicting nonlinear behavior within the pile‐soil system, addressing simulations involving nonlinear pile‐soil interaction, pile group effect, and cyclic loading. Modified element formulations based on soil stiffness matrices and soil resistance vectors specifically address pile group effect and consider parameters that influence pile behavior under cyclic lateral loading. The numerical solution procedure with Newton‐Raphson iteration allows the calculation of pile responses in geometric and material nonlinear analyses. The validation of the proposed method includes several examples, comparing it with existing numerical solutions and experimental tests of single piles and pile groups under cyclic loading. These comparisons further support the consistency of the proposed method with measured data and validate its accuracy in considering group effect and cyclic loading. The parametric study illustrates the ability of the proposed method to capture cyclic loading parameters while considering the influence of the number and magnitude of load cycles, the cyclic load direction, and the installation methods.

Funder

National Natural Science Foundation of China

Guangdong Provincial Department of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3