Affiliation:
1. School of Infrastructure Engineering Nanchang University Nanchang China
2. State Key Laboratory for Tunnel Engineering & School of Civil Engineering Sun Yat‐Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai P. R. China
3. Guangdong Key Laboratory of Marine Civil Engineering Guangzhou P. R. China
Abstract
AbstractThe effect of cyclic loading is an essential factor leading to progressive soil strength degradation. Therefore, a comprehensive analysis of the pile‐soil system behavior under cyclic loading is required to ensure the stability of pile group. There is room for improvement in the inherent constraint of the conventional numerical model in terms of approximating the soil resistance distribution along the pile by point loads at element nodes, necessitating a specific element that integrates considerations of pile group effect and cyclic loading within a unified framework. This study aims to develop a newly specific type of element for efficiently predicting nonlinear behavior within the pile‐soil system, addressing simulations involving nonlinear pile‐soil interaction, pile group effect, and cyclic loading. Modified element formulations based on soil stiffness matrices and soil resistance vectors specifically address pile group effect and consider parameters that influence pile behavior under cyclic lateral loading. The numerical solution procedure with Newton‐Raphson iteration allows the calculation of pile responses in geometric and material nonlinear analyses. The validation of the proposed method includes several examples, comparing it with existing numerical solutions and experimental tests of single piles and pile groups under cyclic loading. These comparisons further support the consistency of the proposed method with measured data and validate its accuracy in considering group effect and cyclic loading. The parametric study illustrates the ability of the proposed method to capture cyclic loading parameters while considering the influence of the number and magnitude of load cycles, the cyclic load direction, and the installation methods.
Funder
National Natural Science Foundation of China
Guangdong Provincial Department of Science and Technology