Feasibility of determining external beam radiotherapy dose using LuSy dosimeter

Author:

Wahabi Janatul Madinah12ORCID,Wong Jeannie Hsiu Ding13ORCID,Mahdiraji Ghafour A.4,Ung Ngie Min5

Affiliation:

1. Department of Biomedical Imaging Faculty of Medicine Universiti Malaya Kuala Lumpur Malaysia

2. Radiotherapy and Oncology Department National Cancer Institute Putrajaya Malaysia

3. Universiti Malaya Research Imaging Centre (UMRIC), Faculty of Medicine Universiti Malaya Kuala Lumpur Malaysia

4. Flexilicate Sdn. Bhd. Universiti Malaya Kuala Lumpur Malaysia

5. Clinical Oncology Unit Faculty of Medicine Universiti Malaya Kuala Lumpur Malaysia

Abstract

AbstractIntroductionRadiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS).Materials and methodsA new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS).ResultsFor CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively.ConclusionThe LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.

Publisher

Wiley

Reference35 articles.

1. IAEA.Radiation Oncology Physics. International Atomic Energy Agency;2005.

2. Radioluminescence of cylindrical and flat Ge-doped silica optical fibers for real-time dosimetry applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3