Digital phantom versus patient‐specific radiation dosimetry in adult routine thorax CT examinations

Author:

Papadakis Antonios E.1,Giannakaki Vassiliki1,Stratakis John1,Myronakis Marios1,Zaidi Habib2345ORCID,Damilakis John6

Affiliation:

1. University Hospital of Heraklion Medical Physics Department Stavrakia, Heraklion Crete Greece

2. Division of Nuclear Medicine and Molecular Imaging Geneva University Hospital Geneva Switzerland

3. Department of Nuclear Medicine and Molecular Imaging University of Groningen University Medical Center Groningen Groningen Netherlands

4. Department of Nuclear Medicine University of Southern Denmark Odense Denmark

5. University Research and Innovation Center Obuda University Budapest Hungary

6. University of Crete, Medical School Medical Physics Department Stavrakia, Heraklion Crete Greece

Abstract

AbstractPurposeThe aim of this study was to compare the organ doses assessed through a digital phantom‐based and a patient specific‐based dosimetric tool in adult routine thorax computed tomography (CT) examinations with reference to physical dose measurements performed in anthropomorphic phantoms.MethodsTwo Monte Carlo based dose calculation tools were used to assess organ doses in routine adult thorax CT examinations. These were a digital phantom‐based dosimetry tool (NCICT, National Cancer Institute, USA) and a patient‐specific individualized dosimetry tool (ImpactMC, CT Imaging GmbH, Germany). Digital phantoms and patients were classified in four groups according to their water equivalent diameter (Dw). Normalized to volume computed tomography dose index (CTDIvol), organ dose was assessed for lungs, esophagus, heart, breast, active bone marrow, and skin. Organ doses were compared to measurements performed using thermoluminescent detectors (TLDs) in two physical anthropomorphic phantoms that simulate the average adult individual as a male (Alderson Research Labs, USA) and as a female (ATOM Phantoms, USA).ResultsThe average percent difference of NCICT to TLD and ImpactMC to TLD dose measurements across all organs in both sexes was 13% and 6%, respectively. The average ± 1 standard deviation in dose values across all organs with NCICT, ImpactMC, and TLDs was ± 0.06 (mGy/mGy), ± 0.19 (mGy/mGy), and ± 0.13 (mGy/mGy), respectively. Organ doses decreased with increasing Dw in both NCICT and ImpactMC.ConclusionOrgan doses estimated with ImpactMC were in closer agreement to TLDs compared to NCICT. This may be attributed to the inherent property of ImpactMC methodology to generate phantoms that resemble the realistic anatomy of the examined patient as opposed to NCICT methodology that incorporates an anatomical discrepancy between phantoms and patients.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3