Serial and parallel organ‐at‐risk‐specific noncoplanar arc optimization for small versus large target volumes in liver SBRT

Author:

Lincoln John1,MacDonald Lee123,Ward Lucy2,Johnston Shelly2,Syme Alasdair123ORCID,Thomas Christopher1234ORCID

Affiliation:

1. Department of Physics and Atmospheric Science Dalhousie University Halifax Canada

2. Department of Radiation Oncology Dalhousie University Halifax Canada

3. Department of Medical Physics Nova Scotia Health Halifax Canada

4. Department of Radiology Dalhousie University Halifax Canada

Abstract

AbstractNoncoplanar arc optimization has been shown to reduce OAR doses in SRS/SRT and has the potential to reduce doses to OARs in SBRT. Extracranial targets have additional considerations, including large OARs and, in the case of the liver, volume constraints on the healthy liver. Considering pathlengths through OARs that encompass target volumes may lead to specific dose reductions as in the encompassing healthy liver tissue. These optimizations must also leverage delivery efficiency and trajectory sampling to ensure ease of clinical translation. The purpose of this research is to generate optimized static‐couch arcs that separately consider serial and parallel OARs and arc delivery efficiency, with a trajectory sampling metric, towards the aim of reducing dose to OARs and the surrounding healthy liver tissue. Separate BEV cost maps were created for parallel, and serial OARs by means of a fast ray‐triangle intersection algorithm. An additional BEV cost map was created for the liver which, by definition, encompasses the liver tumors. The individual costs of these maps were summed and combined with the sampling metric for 100 000 random combinations of arc trajectories. A search algorithm was applied to find an arc trajectory solution that satisfied BEV cost and sampling optimization, while also ensuring an efficient delivery was possible with a low number of arcs. This method of arc selection was evaluated for 16 liver SBRT patients characterized by small and large target volumes. Comparisons were made with a clinical arc template of coplanar arcs. Dosimetric plan quality was evaluated using published guidelines and metrics from RTOG1112. Four of five plan quality metrics for the liver were significantly reduced when planned with optimized noncoplanar arcs. Median (range) reductions of the volumes receiving 10, 18, and 21 Gy were found of 140.4 (295.8) cc (p = 0.001), 28.2 (230.6) cc (p = 0.002) and 18.5 (155.5) cc (p = 0.04). A significant increase in median (range) dose to the right kidney of 0.2 ± 0.9 Gy (p = 0.03) was also found using optimized noncoplanar arcs, which was below the tolerance of 10 Gy for all cases. The average number of arcs chosen was 4 ± 1. Optimizing serial and parallel OARs separately during static couch noncoplanar arc selection significantly reduced the dose to the liver during SBRT using a moderate number of arcs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3