Robot‐assisted crack detection on complex shaped components using constant‐speed scanning infrared thermography with laser line excitation

Author:

Pech‐May Nelson W.1ORCID,Lecompagnon Julien2ORCID,Hirsch Philipp2,Ziegler Mathias2

Affiliation:

1. Independent Researcher Mérida Mexico

2. Division 8‐7 Thermographic Methods Bundesanstalt für Materialforschung und ‐prüfung (BAM) Berlin Germany

Abstract

AbstractInfrared thermography (IRT) using a focused laser is effective for surface defect detection. Nevertheless, testing complex‐shaped components remains a challenging task. The state‐of‐the‐art focuses on testing a limited region of interest rather than the full sample. Thus, detection and location of surface defects has been less researched. Most attempts require a manual scan of the full sample, which makes it hard to reconstruct the full scanned surface. Here, we introduce a reliable workflow for crack detection and semi‐automated inspection of complex‐shaped components using IRT excited with a laser line. A 6‐axis robot arm is used for moving the sample in front of the setup. This approach has been tested on a section of a rail and a gear, both containing defects due to heavy use. Crack detection is based on the segmentation of thermograms obtained by Fourier transform of sorted temperatures. Moreover, texture mapping is used to visualize a reconstructed thermogram on the 3D model of the sample. Our approach illustrates a reliable process towards the digitalization of thermographic testing.

Funder

European Regional Development Fund

Publisher

Wiley

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3