Modification induced by electronic excitation in CoFe2O4 thin films: Structural, morphological, and magnetic properties

Author:

Nongjai Razia1,Bala Manju2,Khan Shakeel3,S. Annapoorni4,Kandasami Asokan15

Affiliation:

1. Materials Science Division Inter‐University Accelerator Centre New Delhi India

2. Department of Physics, Hindu College University of Delhi New Delhi India

3. Department of Applied Physics Zakir Hussain College of Engineering & Technology, A.M.U. Aligarh India

4. Department of Physics and Astrophysics University of Delhi New Delhi India

5. Department of Physics, Centre for Interdisciplinary Research University of Petroleum and Energy Studies (UPES) Dehradun Uttarakhand India

Abstract

AbstractThe present study focuses on the modification induced by 200 MeV Ag15+ and 100 MeV O7+ ion irradiations on the structural, surface morphological, and magnetic properties of radio frequency sputtered CoFe2O4 (CFO) thin films grown on SiO2/Si (100) substrates. X‐ray diffraction shows amorphization of the CFO thin films when irradiated with Ag ions and varies with fluences. This effect is absent in the case of O ion irradiated CFO films. These results are consistent with the measurements from the Raman spectroscopy, where the intensities of Eg and T2g modes are significantly reduced and further disappear in the high fluence. The surface morphology of the O ion irradiated films is dramatically different from the pristine and Ag ion irradiated films where the surfaces appear in nanopillars‐like patterns. The topography of the O ion irradiated films appears to be like hill and valley structures, the roughness first increases (from 10.11 to 24.39 nm). Then it decreases to 18.93 nm on further increasing ion fluence. The coercivity, remnant magnetization, and saturation magnetization increase upon irradiation at low fluence 5 × 1011 ions/cm2 for both the ion beams and then downturn with the increase of fluence 5 × 1012 ions/cm2. The changes in the magnetic and structural characteristics are ascribed to the defects induced by ion irradiation. These results are understood based on the structural and surface modifications induced by the electronic excitation of Ag and O ions. The study depicts that a controlled selection of ions and beam fluence can tailor the structure, morphology, and magnetic properties of ferrite films.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3