Deep learning for spatio‐temporal supply and demand forecasting in natural gas transmission networks
Author:
Affiliation:
1. Department for Applied Algorithmic Intelligence Methods Zuse Institute Berlin Berlin Germany
2. Chair of Software and Algorithms for Discrete Optimization Technische Universität Berlin Berlin Germany
Publisher
Wiley
Subject
General Energy,Safety, Risk, Reliability and Quality
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ese3.932
Reference54 articles.
1. International Energy Agency.Germany 2020 Energy policy review. Technical report International Energy Agency;2020.
2. Bundesnetzagentur.Monitoring report 2019. Technical report BUNDESKARTELLAMT;2019.
3. Working Group on Energy Balances.Evaluation tables on the energy balance for the federal republic of germany 1990 to 2019. Technical report Arbeitsgemeinschaft Energiebilanzen;2019.
4. Predicting residential energy consumption using CNN-LSTM neural networks
5. Deep Learning for Load Forecasting: Sequence to Sequence Recurrent Neural Networks With Attention
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. FMM-VMD-Transformer: A hybrid deep learning model for predicting natural gas consumption;Digital Engineering;2024-09
2. Application of forecasting strategies and techniques to natural gas consumption: A comprehensive review and comparative study;Engineering Applications of Artificial Intelligence;2024-03
3. Deep Learning Based Leak Detection of Oil Transmission;2023 3rd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA);2023-12-13
4. Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey;Energies;2023-07-14
5. Forecasting annual natural gas consumption in USA: Application of machine learning techniques- ANN and SVM;Resources Policy;2023-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3