Machine learning models for classifying coffee fruits detachment force

Author:

Meneses Mariana D.1ORCID,dos Santos Carreira Vinicius1ORCID,de Almeida Moreira Bruno Rafael2,do Vale Welington Gonzaga3,de Souza Rolim Glauco1,da Silva Rouverson Pereira1ORCID

Affiliation:

1. Universidade Estadual Paulista “Júlio de Mesquita Filho,” Faculdade de Ciências Agrárias e Veterinárias – Campus Jaboticabal Jaboticabal Brazil

2. The Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland (UQ) St Lucia Queensland Australia

3. Universidade Federal de Sergipe, Departamento de Engenharia Agrícola São Cristóvão Brazil

Abstract

AbstractThe maturation process of coffee (Coffea arabica) trees exhibits inherent variability, producing fruits at various physiological maturity stages. This variability affects the resistance between the fruit and its peduncle, posing a challenge in mechanized harvesting: non‐selective harvesting. A precise classification of coffee fruit detachment force is essential to address this challenge, ensuring coffee's quality and producer's profitability. This study assesses the efficacy of machine learning (ML) models in determining the detachment force across various coffee cultivars under drip‐irrigated and rainfed conditions. The dataset included detachment force measurements from 24 cultivars—13 drip‐irrigated and 11 rainfed—yielding 1152 data points. Variance analysis compared irrigation methods and three maturity stages: green, cherry, and dry. Detachment force was categorized into four classes based on the dataset's quartile distribution. The ML models utilized were random forest (RF), support vector machine (SVM), K‐nearest neighbors, and artificial neural networks. The SVM model was notably effective in classifying detachment force for rainfed cultivars, with a Matthews correlation coefficient (MCC) of 0.78. In contrast, the RF model was particularly adept for drip‐irrigated cultivars, with an MCC of 0.75. The highest classification accuracies were recorded for the extreme force classes I and IV, with precision values of 0.93 and 0.8, respectively, while classes II and III had lower precision at 0.57 and 0.69. Implementing these ML models for detachment force classification has been beneficial, improving decision‐making in mechanized harvesting systems.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3