Irrigation termination has the potential to improve cotton yield and quality on different soil types

Author:

Farhadi Machekposhti Mabood1ORCID,Leib Brian G.1,Xie Shuhua1,Raper Tyson B.2ORCID,Grant Timothy James1

Affiliation:

1. Department of Biosystems Engineering and Soil Science University of Tennessee Knoxville Tennessee USA

2. Department of Plant Sciences University of Tennessee Jackson Tennessee USA

Abstract

AbstractIrrigation termination timing is challenging for cotton producers in humid regions, especially for fields with varying soil types. A field experiment was conducted in Jackson, TN, to investigate the best cotton irrigation termination on different soil types. The water management treatments consisted of rainfed conditions (RF) and terminating irrigation 2 weeks before the first crack boll (ITBC1 and ITBC2), at the first crack boll (ITC1 and ITC2), and 2 weeks after the first cracked boll (ITAC1 and ITAC2). The irrigation rates consisted of normal irrigation (2) and increased irrigation (1) during the 2 weeks prior to irrigation termination. Irrigation treatments were implemented on three soils: a low, an intermediate, and a high available water‐holding capacity (AWHC) soil. In sandy soil, seed yield increased by 127% in 2015 with the ITAC1 treatment and by 313% in 2016 with the ITC1 treatment, compared to the control (RF). These treatments were also found to be optimal for lint yield and irrigation water productivity in their respective years. The high AWHC soil did not require any irrigation in either growing season to optimize yield. In fact, irrigating at a high rate at every termination date caused yield loss in 2015. These results indicate that cotton can benefit from later termination and higher irrigation rates when soil water and rainfall are low at the end of the growing season or be harmed when the opposite is true.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3