Understanding the impact of different nanofillers on electrical, thermal, and surface properties of corona‐aged silicone rubber nanocomposites

Author:

Kavitha N.1ORCID,Manoj Dhivakar J.2,Bhavani N. P. G.1,Sarathi Ramanujam2ORCID,Kornhuber Stefan3

Affiliation:

1. Electronics Instrumentation System, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science Saveetha University Chennai India

2. Department of Electrical Engineering Indian Institute of Technology Madras Chennai India

3. Department of High Voltage Engineering University of Applied Sciences Zittau/Goerlitz Zittau Germany

Abstract

AbstractIn the present work, the impact of corona aging on the dielectric, thermal, and surface properties of silicone rubber filled with different nanofillers such as alumina (Al2O3), aluminum trihydrate (ATH), boron nitride (BN), and titania (TiO2) are studied. The surface degradation of the silicone rubber nanocomposites after corona aging is evaluated through contact angle measurement, atomic force microscopy (AFM) studies, and by water droplet‐initiated corona inception voltage studies. Alumina filled silicone rubber shows less reduction in surface and hydrophobic properties after corona aging. Water droplet initiated corona inception voltage (CIV) under negative DC voltage is much higher than under positive DC and AC voltages. Al2O3/TiO2‐ filled silicone rubber samples show better CIV performance. The Dielectric Response Spectroscopy (DRS) indicates that TiO2 filled silicone rubber insulating material possesses higher permittivity at lower frequencies. Boron nitride added composites have high thermal conductivity whereas ATH filled silicone rubber composites shows higher decay rate, as observed through laser‐induced thermography studies. A significantly high surface leakage current is observed in all samples after corona aging. The Space Charge Limited Current (SCLC) studies clearly indicate that inclusion of nano‐fillers resulted in an increase in crossover voltage and trap density values compared to base silicone rubber.Highlights Al2O3 filled silicone rubber exhibits lower surface roughness even after corona aging. High thermal conductive composites show better performance even after corona aging. ATH, and BN filled silicone rubber have improved thermal conductivity by 35.2% and 76.3%. TiO2 filler added silicone rubber exhibits high permittivity with low tan δ. Al2O3 filled silicone rubber has minimal surface and volume leakage current Crossover voltage and the trap density get enhanced on addition of fillers to the base polymer.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3