Modeling Human Retinal Development with Patient-Specific Induced Pluripotent Stem Cells Reveals Multiple Roles for Visual System Homeobox 2

Author:

Phillips M. Joseph12,Perez Enio T.1,Martin Jessica M.1,Reshel Samantha T.1,Wallace Kyle A.1,Capowski Elizabeth E.1,Singh Ruchira12,Wright Lynda S.1,Clark Eric M.1,Barney Patrick M.1,Stewart Ron3,Dickerson Sarah J.4,Miller Michael J.4,Percin E. Ferda5,Thomson James A.3678,Gamm David M.129

Affiliation:

1. Waisman Center University of Wisconsin-Madison, Madison, Wisconsin, USA

2. McPherson Eye Research Institute University of Wisconsin-Madison, Madison, Wisconsin, USA

3. Morgridge Institute for Research, Madison, WI, USA

4. Cellular Dynamics International, Inc., Madison, Wisconsin, USA

5. Department of Medical Genetics Faculty of Medicine Gazi University, Ankara, Turkey

6. Department of Cell and Regenerative Biology University of Wisconsin-Madison, Madison, Wisconsin, USA

7. The Genome Center of Wisconsin University of Wisconsin-Madison, Madison, Wisconsin, USA

8. Department of Molecular, Cellular, and Developmental Biology University of California Santa Barbara, Santa Barbara, California, USA

9. Department of Ophthalmology and Visual Sciences University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract

Abstract Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions, hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, visual system homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wild-type VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans and support the bona fide nature of hiPSC-OV-derived retinal progeny. Stem Cells  2014;32:1480–1492

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3