Aspects of Admixture Research: On the Use of Machine Learning in Superplasticizer Chemistry

Author:

Gädt Torben1,Wagner Thomas1

Affiliation:

1. TU München Garching Germany

Abstract

AbstractThe use of superplasticizers in concrete, especially polycarboxylate ethers (PCE), has delivered the ability to easily achieve low water to cement ratios and thereby either higher strength or lower cement contents. In the last years, significant progress has been made with regard to understanding the structure‐activity relationship of the interaction of PCE and cement. For example, scaling laws have been derived for the size of adsorbed PCE, the magnitude of the steric interaction force, for the retardation of cement hydration by PCEs and more recently for competitive adsorption. While this is extremely useful, the picture is not fully complete yet.In this contribution, we wish to highlight some recent work in the field of data analysis of PCE. Inspired by a very early machine‐learning study of concrete formulations, we extracted structural PCE data together with rheology data from the literature. We compare PCE performance across studies and attempt to uncover underlying structure‐activity‐relationships (using machine learning models). It turns out that the data set quality and quantity is not yet sufficient to establish reliable models.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3