Comprehensive evaluation of energy absorption characteristics of Al‐CFRP hybrid tube under radial impacts

Author:

Ma Qihua1234ORCID,Nie Na1,Zhang Shuhui1,Gan Xuehui234

Affiliation:

1. School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai China

2. Donghua University Center for Civil Aviation Composites Shanghai China

3. Donghua University Shanghai Collaborative Innovation Center of High‐Performance Fibers and Composites (Province‐Minitry Joint) Shanghai China

4. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University Shanghai China

Abstract

AbstractThis paper aimed to investigate the energy absorption characteristics and damage mechanism of carbon fiber reinforced plastics/aluminum (Al‐CFRP) under radial impact. In this study, the damage mode of the hybrid tube is analyzed by falling hammer impact experiments, and the correctness of the finite element model is verified by comparing the experimental and numerical simulation results. Then, the damage mechanism of the hybrid tube under impact loading and the effects of the increase of the fiber angle, the wall thickness of Aluminum, and the number of outer CFRP layers on the impact resistance were analyzed according to the model. The comprehensive performance model of the hybrid tube was established by using the complex scale comprehensive evaluation method, and the genetic algorithm was used to optimize the hybrid tube and determine its optimal performance under radial impact load. The results show that the Al‐CFRP hybrid tube's overall stiffness and deformation resistance under radial impact is improved with the increase of the fiber angle, the wall thickness of the Al tube, and the number of outer CFRP layers. Combined with the parametric analysis of the numerical simulation results, a comprehensive performance evaluation model based on the complex proportionality assessment method (COPRAS) was developed and a genetic algorithm (GA) under back propagation (BP) neural network prediction was used. The optimal hybrid tube form with the best overall performance under radial impact was obtained using GA with BP neural network prediction.Highlights The energy absorption characteristics of hybrid tubes under radial impact are investigated A comprehensive performance evaluation model of hybrid pipe based on the complex proportional assessment method (COPRAS) is developed The failure process and energy absorption mechanism of the hybrid pipe under radial impact are analyzed A genetic algorithm (GA) with backpropagation (BP) neural network prediction was used to obtain the hybrid pipe form with the best overall performance under radial impact

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3