A fuzzy model for generalized transportation problems in China

Author:

Aljanabi Mohanad R.12,Borna Keivan1ORCID,Ghanbari Shamsollah3

Affiliation:

1. Faculty of Mathematical Sciences and Computer Kharazmi University Tehran Iran

2. Faculty of Computer Science and Mathematics University of Kufa Najaf Iraq

3. Department of Computer Science, Faculty of Engineering Islamic Azad University Ashtian Iran

Abstract

SummaryThis study underscores the growing significance of multimodal transportation within the cargo sector and its consequential environmental impacts. We present a novel mathematical model for operation scheduling, incorporating variables such as resource availability, customer service benchmarks, and environmental considerations. Our objective is to mitigate transportation expenses and reduce delivery delays. The proposed approach advocates LU decomposition with a pivot strategy for rapid model resolution, adherence to convergence criteria, optimization of cost strategies, and efficient resource utilization. Leveraging the adaptive neural fuzzy inference system (ANFIS) and genetic algorithm (GA), our methodology facilitates learning from past decisions to enhance solutions, aligning supply, and demand efficiently. We evaluate financial and environmental implications across four scenarios, offering insights into the economic and environmental advantages of various transportation modes—trains, ships, airplanes—compared to truck transportation, with a specific focus on CO2 emission impacts. Implementing the ANFIS+GA model in multimodal scenarios yield impressive results: minimal MAPE transportation cost of 0.17%, R2 transportation cost of 0.996, MAPE CO2 emissions of 0.13%, and R2 CO2 emissions of 0.996. By identifying cost‐efficient routes and optimizing resource allocations, our approach enables informed decisions regarding vehicle distribution, supplier selection, and contract negotiations. Additionally, we use LU decomposition to establish the supplier risk threshold, crucial for comparing emission trade variances. Multimodal scenarios typically yield lower emissions, favoring buying emission allowances low and selling them high. Notably, the risk threshold affects low‐emission provider utilization, impacting transportation emissions. With a risk threshold of 0.12 and an emission price of 1.2, our ANFIS+GA‐based multimodal approach achieves a significant −20% deviation in CO2 emissions.

Publisher

Wiley

Reference33 articles.

1. Multimodal Transportation: The Case of Laptop from Chongqing in China to Rotterdam in Europe

2. Evaluation of multimodal transport in China based on hesitation fuzzy multiattribute decision‐making;Han B;Math Probl Eng,2020

3. JianZ.Multimodal freight transportation problem: modal algorithm and environmental impacts. Rutgers University‐Graduate School‐Newark.2017.

4. Cricket China Transport. Accessed October 25 2023.https://www.ceicdata.com/en/country/china

5. Multimodal transportation, logistics, and the environment: managing interactions in a global economy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3