Unified throughout‐pore microstructure enables ultrahigh separator porosity for robust high‐flux lithium batteries

Author:

Chen Dongjiang123,Liu Yuanpeng12,Feng Chao123,He Yuhui4,Zhou Shengyu12,Yuan Botao12,Dong Yunfa12,Xie Haodong12,Zeng Guangfeng12,Han Jiecai12,He Weidong1245ORCID

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin China

2. Center for Composite Materials and Structures Harbin Institute of Technology Harbin China

3. State Key Laboratory of Electronic Thin Film and Integrated Devices University of Electronic Science and Technology of China Chengdu China

4. Chongqing Research Institute Harbin Institute of Technology Chongqing China

5. Interdisciplinary Graduate Program in Materials Science Vanderbilt University Nashville Tennessee USA

Abstract

AbstractWith small thickness, commercial polyolefin separators own low porosity to ensure sufficient thermomechanical properties, resulting in tortuous and enlarged Li+ diffusion pathways that induce large overpotentials and detrimental dendrite growth. As a dilemma, the exploration of highly porous separators has been challenged by their large thickness, impairing the applicability of such pursuits. Herein, an ultraporous architecture is designed to shorten Li+ transfer pathways by impregnating electrolyte‐affinitive poly (vinylidene fluoride‐co‐hexafluoropropylene) into ultralight ∼3 μm 3D‐polytetrafluoroethylene scaffold (abbreviated as UP3D). The UP3D separator with a porosity of 74% gives rise to 70% enhancement in Li+ transference and 77% reduction in Li+ transfer resistance (2.67 mΩ mm−1) and thus enables an ultrahigh Li+ flux of 22.7 mA cm−2, effectively alleviating Li+ concentration gradient across the separator. With the separator, the LiFePO4 half cell delivers a capacity of 118 mAh g−1 with an unparalleled capacity retention of 90% after 1000 cycles at 2 C, and a graphite || LiNi0.6Co0.2Mn0.2O2 pouch full cell delivers an areal energy density of 6.8 mWh cm−2 at 8.848 mA (1.4 mA cm−2) with a high cathode loading of 134.9 mg. Such results, together with the scalable production of the separator, reflect its promising potential in high‐flux battery applications of separators that require both ultrahigh porosity and reliability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3