CEST and nuclear Overhauser enhancement imaging with deep learning–extrapolated semisolid magnetization transfer reference: Scan‐rescan reproducibility and reliability studies

Author:

Heo Hye‐Young1ORCID,Singh Munendra1,Yedavalli Vivek1,Jiang Shanshan1,Zhou Jinyuan1ORCID

Affiliation:

1. The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University Baltimore Maryland USA

Abstract

AbstractPurposeTo develop a novel MR physics‐driven, deep‐learning, extrapolated semisolid magnetization transfer reference (DeepEMR) framework to provide fast, reliable magnetization transfer contrast (MTC) and CEST signal estimations, and to determine the reproducibility and reliability of the estimates from the DeepEMR.MethodsA neural network was designed to predict a direct water saturation and MTC‐dominated signal at a certain CEST frequency offset using a few high‐frequency offset features in the Z‐spectrum. The accuracy, scan‐rescan reproducibility, and reliability of MTC, CEST, and relayed nuclear Overhauser enhancement (rNOE) signals estimated from the DeepEMR were evaluated on numerical phantoms and in heathy volunteers at 3 T. In addition, we applied the DeepEMR method to brain tumor patients and compared tissue contrast with other CEST calculation metrics.ResultsThe DeepEMR method demonstrated a high degree of accuracy in the estimation of reference MTC signals at ±3.5 ppm for APT and rNOE imaging, and computational efficiency (˜190‐fold) compared with a conventional fitting approach. In addition, the DeepEMR method achieved high reproducibility and reliability (intraclass correlation coefficient = 0.97, intersubject coefficient of variation = 3.5%, and intrasubject coefficient of variation = 1.3%) of the estimation of MTC signals at ±3.5 ppm. In tumor patients, DeepEMR‐based amide proton transfer images provided higher tumor contrast than a conventional MT ratio asymmetry image, particularly at higher B1 strengths (>1.5 μT), with a distinct delineation of the tumor core from normal tissue or peritumoral edema.ConclusionThe DeepEMR approach is feasible for measuring clean APT and rNOE effects in longitudinal and cross‐sectional studies with low scan‐rescan variability.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3