Environmental DNA metabarcoding differentiates between micro‐habitats within the rocky intertidal

Author:

Shea Meghan M.1ORCID,Boehm Alexandria B.2ORCID

Affiliation:

1. Emmett Interdisciplinary Program in Environment & Resources (E‐IPER) Stanford University Stanford California USA

2. Department of Civil and Environmental Engineering Stanford University Stanford California USA

Abstract

AbstractWhile the utility of environmental DNA (eDNA) metabarcoding surveys for biodiversity monitoring continues to be demonstrated, the spatial and temporal variability of eDNA, and thus the limits of the differentiability of an eDNA signal, remains under‐characterized. In this study, we collected eDNA samples from distinct micro‐habitats (~40 m apart) in a rocky intertidal ecosystem over their exposure period in a tidal cycle. During this period, the micro‐habitats transitioned from being interconnected, to physically isolated, to interconnected again. Using a well‐established eukaryotic (cytochrome oxidase subunit I) metabarcoding assay, we detected 415 species across 28 phyla. Across a variety of univariate and multivariate analyses, using exclusively taxonomically assigned data as well as all detected amplicon sequence variants (ASVs), we identified unique eDNA signals from the different micro‐habitats sampled. This differentiability paralleled expected ecological gradients and increased as the sites became more physically disconnected. Our results demonstrate that eDNA biomonitoring can differentiate micro‐habitats in the rocky intertidal only 40 m apart, that these differences reflect known ecology in the area, and that physical connectivity informs the degree of differentiation possible. These findings showcase the potential power of eDNA biomonitoring to increase the spatial and temporal resolution of marine biodiversity data, aiding research, conservation, and management efforts.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3