A general element for shell analysis based on the scaled boundary finite element method

Author:

Lin Gao12ORCID,Ye Wenbin12,Li Zhiyuan12

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering Dalian University of Technology Dalian China

2. Department of Hydraulic Engineering, School of Infrastructure Engineering Dalian University of Technology Dalian China

Abstract

AbstractA novel technique, the scaling surface‐based Scaled Boundary Finite Element Method (SBFEM), is introduced as a method for formulating a general element for shell analysis. This displacement‐based element includes three translational degrees of freedom (DOFs) per node. Notably, only two‐dimensional discretization for one of the two parallel shell surfaces, referred to as the scaling surface, is necessary. The interpolation scheme for the scaling surface is postulated to be applicable to all surfaces parallel to it in the thickness. The derivation strictly adheres to the 3D theory of elasticity, without making additional kinematic assumptions. As a result, the displacement field along the thickness is analytically solved, and the element formulation is immune to transverse locking, membrane locking, and other issues, eliminating the need for additional remedies. Extensive investigations into the robustness and accuracy of the elements have been conducted using well‐known benchmark problems, along with additional challenging problems. Numerical examples confirm that the element formulation is free from transverse shear locking and membrane locking. Moreover, the proposed formulation is easily extendable to cases involving shell elements with varying thickness and holds the potential for extension to the nonlinear response analysis of shell structures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3