Prognostic models for patients suffering a heart failure with a preserved ejection fraction: a systematic review

Author:

Jia Ying‐Ying12,Cui Nian‐Qi3,Jia Ting‐Ting4,Song Jian‐Ping1ORCID

Affiliation:

1. Department of Nursing The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China

2. Department of Nursing Zhejiang University School of Medicine Hangzhou China

3. School of Nursing Kunming Medical University Kunming China

4. Department of General Surgery Gansu Provincial People's Hospital, Cadre Ward Lanzhou China

Abstract

AbstractThe purpose of this study was to systematically review the development, performance, and applicability of prognostic models developed for predicting poor events in patients with heart failure with preserved ejection fraction (HFpEF). Databases including Embase, PubMed, Web of Science Core Collection, the Cochrane Library, China National Knowledge Infrastructure, Wan Fang, Wei Pu, and China Biological Medicine were queried from their respective dates of inception to 1 June 2023, to examine multivariate models for prognostic prediction in HFpEF. Both forward and backward citations of all studies were included in our analysis. Two researchers individually used the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist to extract data and assess the quality of the models using the Predictive Mode Bias Risk Assessment Tool (PROBAST). Among the 6897 studies screened, 16 studies derived and/or validated a total of 39 prognostic models. The sample size ranges for model development, internal validation, and external validation are 119 to 5988, 152 to 1000, and 30 to 5957, respectively. The most frequently employed modelling technique was Cox proportional hazards regression. Six studies (37.50%) conducted internal validation of models; bootstrap and k‐fold cross‐validation were the commonly used methods for internal validation of models. Ten of these models (25.64%) were validated externally, with reported the c‐statistic in the external validation set ranging from 0.70 to 0.96, while the remaining models await external validation. The MEDIA echo score and I‐PRESERVE‐sudden cardiac death prediction mode have been externally validated using multiple cohorts, and the results consistently show good predictive performance. The most frequently used predictors identified among the models were age, n‐terminal pro‐brain natriuretic peptide, ejection fraction, albumin, and hospital stay in the last 5 months owing to heart failure. All study predictor domains and outcome domains were at low risk of bias, high or unclear risk of bias of all prognostic models due to underreporting in the area of analysis. All studies did not evaluate the clinical utility of the prognostic models. Predictive models for predicting prognostic outcomes in patients with HFpEF showed good discriminatory ability but their utility and generalization remain uncertain due to the risk of bias, differences in predictors between models, and the lack of clinical application studies. Future studies should improve the methodological quality of model development and conduct external validation of models.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3