Affiliation:
1. Departamento de Odontología Restauradora, Facultad de Odontología Universidad de Concepción Concepción Chile
2. Departamento de Salud Pública, Facultad de Odontología Universidad de Concepción Concepción Chile
3. Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
Abstract
AbstractIntroductionAn ideal filling material should hermetically seal the communication pathways between the canal system and surrounding tissues. Therefore, during the last few years, the development of obturation materials and techniques to create optimal conditions for the proper healing of apical tissues has been a focus of interest. The effects of calcium silicate‐based cements (CSCs) on periodontal ligament cells have been investigated, and promising results have been obtained. To date, there are no reports in the literature that have evaluated the biocompatibility of CSCs using a real‐time live cell system. Therefore, this study aimed to evaluate the real‐time biocompatibility of CSCs with human periodontal ligament cells (hPDLCs).MethodologyhPDLC were cultured with testing media of endodontic cements for 5 days: TotalFill‐BC Sealer, BioRoot RCS, Tubli‐Seal, AH Plus, MTA ProRoot, Biodentine, and TotalFill‐BC RRM Fast Set Putty. Cell proliferation, viability, and morphology were quantified using real‐time live cell microscopy with the IncuCyte S3 system. Data were analyzed using the one‐way repeated measures (RM) analysis of variance multiple comparison test (p < .05).ResultsCompared to the control group, cell proliferation in the presence of all cements was significantly affected at 24 h (p < .05). ProRoot MTA and Biodentine lead to an increase in cell proliferation; there were no significant differences with the control group at 120 h. In contrast, Tubli‐Seal and TotalFill‐BC Sealer inhibited cell growth in real‐time and significantly increased cell death compared to all groups. hPDLC co‐cultured with sealer and repair cements showed a spindle‐shaped morphology except with cements Tubli‐Seal and TotalFill‐BC Sealer where smaller and rounder cells were obtained.ConclusionsThe biocompatibility of the endodontic repair cements performed better than the sealer cements, highlighting the cell proliferation of the ProRoot MTA and Biodentine in real‐time. However, the calcium silicate‐based TotalFill‐BC Sealer presented a high percentage of cell death throughout the experiment similar to that obtained.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献