Effects of melatonin, proline, and salicylic acid on seedling growth, photosynthetic activity, and leaf nutrients of sorghum under salt stress

Author:

Kiremit Mehmet Sait1ORCID,Öztürk Elif2,Arslan Hakan1,Subrata Bhaskara Anggarda Gathot2ORCID,Akay Hasan2ORCID,Bakirova Aigerim1ORCID

Affiliation:

1. Department of Agricultural Structures and Irrigation, Faculty of Agriculture Ondokuz Mayıs University Samsun Turkey

2. Department of Field Crops, Faculty of Agriculture Ondokuz Mayıs University Samsun Turkey

Abstract

AbstractSoil salinization poses a significant challenge to the sustainability and productivity of agriculture worldwide. This issue continues to hinder plant growth, requiring innovative solutions to alleviate salt stress. Moreover, climate change accelerates soil salinization, which may soon spread to previously unaffected agricultural areas. Therefore, the present study evaluated the potential role of different seed priming agents (hydro (H), salicylic acid (SA), proline (P), and melatonin (MEL)) on seedlings and leaf macro and micronutrients of sorghum grown under four (.27, 2.5, 5.0, and 8.0 dS m−1) soil salinity conditions. Soil salinity drastically reduced all the growth parameters of sorghum seedlings, primarily the reduction in growth traits, which was remarkable after 2.5 dS m−1 soil salinity. In addition, plant height, shoot fresh weight, and stomata were reduced by 40.8%, 74.6%, and 36.5%, respectively, at 8.0 dS m−1 compared to .27 dS m−1. SA‐ and MEL‐primed seeds mitigated the harmful effects of soil salinity by reducing Na+ accumulation in the leaves and increasing the K+/Na+ and Ca2+/Na+ ratios and photosynthetic activity under salt stress. However, the Zn2+, Mn2+, and Cu2+ contents of sorghum leaves increased with increasing soil salinity, and these nutrients also improved with seed priming by SA, MEL, and P. Considering all nutrients, MEL‐primed sorghum seeds had better macro‐ and micro‐nutrient uptake capacities than the H, SA, and P treatments under high soil salinity conditions. Finally, the present study showed that MEL‐induced improvement in salt tolerance in sorghum seedlings was related to enhanced nutritional status, photosynthetic activity, and biomass production in salinized areas.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3