Drop‐off in axonal regeneration along the length of a cross‐face nerve graft: An experimental study in rats

Author:

Janes Lindsay E.1,Kelsey Lauren J.1,Sasson Daniel C.1,Applebaum Sarah1,Ledwon Joanna K.1,Gosain Arun K.1

Affiliation:

1. Ann & Robert H. Lurie Children's Hospital of Chicago Northwestern University Feinberg School of Medicine Chicago Illinois USA

Abstract

AbstractIntroductionThe average nerve graft length utilized in cross‐face nerve grafting for reconstruction of facial nerve palsy is 20–22 cm. While the graft length is thought to be one of the greatest determinants of muscle strength, the mechanism through which this happens remains unknown. We studied changes in axonal regeneration along the length of a 2 cm cross‐face nerve graft in a rat model. The hypothesis was that axon count would decrease along the length of the graft.MethodsA 2 cm nerve graft (sciatic nerve) was used as a cross‐face nerve graft in 16 adult female, 210–250 g, Sprague Dawley rats. Thirteen weeks later, 5 mm nerve biopsies were taken at four sites: the facial nerve trunk (control), proximal graft, midpoint of graft (1 cm distal to coaptation) and distal graft (2 cm distal to coaptation). Retrograde nerve labeling with FluoroGold was performed at the biopsied nerve site and the facial motor nucleus was taken 1 week later. Microscopic imaging and manual counting of axons and labeled motor nuclei was performed.ResultsRetrograde‐labeled motor neuron counts were decreased at the midway point of the graft compared to the facial trunk (1517 ± 335 axons, Δ% = 92.5, p = .01) and even further decreased at the distal end of the graft (269 ± 293 axons, Δ% = 175.5, p = .006). Analysis of the nerve biopsies demonstrated no significant differences in myelinated axon count between the nerve trunk and over the length of the nerve graft (range 6207–7179 axons, Δ% = 14.5, p = .07).ConclusionIn a rat model, the number of regenerating motor neurons drops off along the length of the graft and axon count is preserved due to axon sprouting. How this pattern correlates to ultimate muscle strength remains unknown, but this study provides insight into why shorter grafts may afford better outcomes.

Publisher

Wiley

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3