Incorporating media news to predict financial distress: Case study on Chinese listed companies

Author:

Zhang Lifang1,Abedin Mohammad Zoynul2,Liu Zhenkun3ORCID

Affiliation:

1. School of Finance Nanjing University of Finance and Economics Nanjing China

2. Department of Accounting and Finance, School of Management Swansea University Swansea UK

3. School of Management Nanjing University of Posts and Telecommunications Nanjing China

Abstract

AbstractFinancial distress prediction has been a prominent research field for several decades. Accurate prediction of financial distress not only helps to safeguard the interests of investors but also improves the ability of managers to manage financial risks. Prior studies predominantly rely on accounting metrics derived from financial statements to predict financial distress. Our research takes a step further by incorporating media news to enhance the accuracy of financial distress prediction. Based on the data from Chinese listed companies, seven classifiers are established to verify the additional value of media news in improving the financial distress prediction performance of models. Experimental results demonstrate that the inclusion of media news in predictive models is effective as it contributes to better performance compared with models that solely rely on accounting features. Moreover, random forest model is a reliable tool in financial distress prediction due to its superior ability to capture complex feature relationships. Evaluation indicators, statistical tests, and Bayesian A/B tests further confirm that the inclusion of media news can significantly improve the identification of financially distressed companies.

Funder

Humanities and Social Sciences Youth Foundation, Ministry of Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3