Development and validation of a DLLME‐HPLC‐FLD method for determination of aflatoxins in Chrysanthemum morifolium based on quality by design principles

Author:

Wu Linlin1ORCID,Chen Meixu1,Huo Xinyi1,Xu Qilin1,Yin Xianggang1,Zhao Xiao Han1,Zhou Yifeng1,Huang Jun1

Affiliation:

1. School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China

Abstract

AbstractIntroductionAflatoxins, potent carcinogens produced by Aspergillus species, present significant health risks and commonly contaminate herbal products such as Chrysanthemum morifolium. Detecting these toxins in C. morifolium proves challenging due to the complex nature of the herbal matrix and the fluctuating levels of toxins found in different samples.ObjectivesThis study aimed to develop and optimize a novel method for the detection of aflatoxins in C. morifolium using dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography‐fluorescence detection based on quality by design principles.MethodologyThe method involved determining critical method attributes and parameters through the Plackett–Burman design, followed by optimization using the Box–Behnken design. Monte Carlo simulation was employed to establish a design space, which was experimentally verified. Method validation was performed to confirm accuracy, precision, and stability.ResultsThe developed method exhibited excellent linearity (R2 > 0.9991) for aflatoxins B1, B2, G1, and G2 across a range of concentrations, with recovery rates between 85.52% and 102.01%. The validated method effectively quantified aflatoxins in C. morifolium under different storage conditions, highlighting the impact of temperature and storage time on aflatoxin production.ConclusionThis study successfully established a reliable and effective method for the detection of aflatoxins in C. morifolium, highlighting the importance of strict storage conditions to reduce aflatoxin contamination. Using a quality by design framework, the method demonstrated robustness and high analytical performance, making it suitable for routine quality control of herbal products.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3