Mefentrifluconazole sensitivity amongst European Zymoseptoria tritici populations and potential implications for its field efficacy

Author:

Kildea Steven1ORCID,Hellin Pierre2ORCID,Heick Thies M.3,Byrne Stephen1,Hutton Fiona1

Affiliation:

1. Teagasc, The Agriculture and Food Development Authority Carlow Ireland

2. Plant and Forest Health Unit Walloon Agricultural Research Center Gembloux Belgium

3. Department of Agroecology Aarhus University Slagelse Denmark

Abstract

AbstractBACKGROUNDSeptoria tritici blotch caused by Zymoseptoria tritici continues to be one of the most economically destructive diseases of winter wheat in north‐western Europe. Control is heavily reliant on the application of fungicides, in particular those belonging to the azole group. Here we describe the sensitivity of European Z. tritici populations to the novel azole mefentrifluconazole and the analysis of associated mechanisms of resistance.RESULTSA wide range of sensitivity to mefentrifluconazole was observed amongst the Z. tritici collections examined, with strong cross‐resistances also observed between mefentrifluconazole, difenoconazole and tebuconazole. Overall, the Irish population displayed the lowest sensitivity to all azoles tested. Further detailed analysis of the Irish population in 2021 demonstrated differences in sensitivity occurred between sampling sites, with these differences associated with the frequencies of key resistance mechanisms (CYP51 alterations and MFS1 promoter inserts linked to overexpression). Under glasshouse conditions reductions in the efficacy of mefentrifluconazole were observed towards those strains exhibiting the lowest in vitro sensitivities.CONCLUSIONSThis study demonstrates that a large range of sensitivity to mefentrifluconazole exists in European Z. tritici populations. Those strains exhibiting the lowest sensitivity to the azoles tested had the most complex CYP51 haplotypes in combination with the 519 bp insert, associated with enhanced activity of MFS1. The future use of mefentrifluconazole should take these findings into consideration to minimise the selection of these strains. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Funder

Aarhus Universitet

Teagasc

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3