Improving hydrodynamic injection in capillary electrophoresis by using the integral of pressure

Author:

da Costa Eric Tavares1,do Lago Claudimir Lucio1ORCID

Affiliation:

1. Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil

Abstract

AbstractA careful analysis of the typical devices and conditions used during hydrodynamic injection in capillary electrophoresis shows that the Hagen–Poiseuille model for the laminar flow is valid, even during the transitions of pressure. Therefore, the monitoring of pressure becomes a reliable approach to evaluate the effective injected volume, because the volume is proportional to the integral of pressure (IoP) over time. A piezoresistive sensor was used to monitor the air pressure at headspace of the sample vial. A set of 18 injections at 50 mbar and different times were used to evaluate the use of the normalization of the peak areas of the analytes by the IoP to compensate for imperfection during the injection. There was a significant decrease in relative standard deviation (RSD), and the proposed approach presented results similar to the use of internal standard. In addition, a microcontroller was used not only to monitor the pressure but also to command a peristaltic pump and a solenoid valve creating a system that dynamically controls the applied pressure and stops the injection when the desired value of IoP is reached. The system was used in a proof of concept in which different combinations of pressure and time were used: 10 mbar × 50 s, 25 mbar × 20 s, 50 mbar × 10 s, 125 mbar × 4 s, and 250 mbar × 2 s. Despite the constraints posed by the flowrates of the peristaltic pump and the solenoid valve, the microcontroller effectively conducted the injections across this extensive range of conditions, resulting in an IoP RSD of 2.7%.

Publisher

Wiley

Subject

Clinical Biochemistry,Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3