Magnetic regulation on evaporation behavior of ferrofluid sessile droplets

Author:

Wang Qi‐yue1,Zhu Gui‐ping1ORCID

Affiliation:

1. College of Astronautics Nanjing University of Aeronautics and Astronautics Nanjing P. R. China

Abstract

AbstractActive magnetic regulation is an emerging subject due to the special and programmable wettability of the sessile ferrofluid droplet. The interaction between liquid and externally applied magnetic field gives rise to controllable spreading and thus evaporation. This work reports the experimental and numerical results of the natural evaporation of a ferrofluid droplet under the effect of a nonuniform magnetic field. The evaporation process of droplets is described into two stages in terms of the geometric distortion and the appearance of the deposition pattern. The presence of the magnetic field leads to a transition of droplet drying from the disk shape with a ring to multiple peaks. A numerical model is established to simulate the evaporation process of ferrofluid droplets with the arbitrary Lagrangian–Eulerian method for tracking droplet deformation. The increasing magnetic flux could effectively enlarge the contact radius and enhance the internal flow of the ferrofluid droplet, thus promoting the evaporation process. The numerical results are verified by comparing the droplet geometry deformation with the experimental results. In both the numerical and experimental investigations, the externally applied magnetic field shortens the process of ferrofluid droplet evaporation. The design and optimization of the magnetic field play an important role in regulating ferrofluid droplet evaporation, which in turn facilitates technological advances in industries such as evaporative cooling and inkjet printing.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Clinical Biochemistry,Biochemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3