Affiliation:
1. William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
2. Department of Chemical Engineering Texas Tech University Lubbock Texas USA
3. Department of Biomedical Engineering Cleveland Clinic Cleveland Ohio USA
Abstract
AbstractPrecisely and accurately determining the magnetic force and its spatial distribution in microfluidic devices is challenging. Typically, magnetic microfluidic devices are designed in a way to both maximize the force within the separation region and to minimize the necessity for knowing such details—such as designing magnetic geometries that create regions of nearly constant magnetic force or that dictate the behavior of the magnetic force to be highly predictable in a specified region. In this work, we present a method to determine the spatial distribution of the magnetic force field in a magnetic microfluidic device by particle tracking magnetophoresis. Polystyrene microparticles were suspended in a paramagnetic fluid, gadolinium, and this suspension was exposed to various magnetic field geometries. Polystyrene particle motion was tracked using a microscope and images processed using Fiji (ImageJ). From a sample with a large spatial distribution of particle tracks, the magnetic force field distribution was calculated. The force field distribution was fitted to nonlinear spatial distribution models. These experimental models are compared to and supported by 3D simulations of the magnetic force field in COMSOL.
Funder
National Heart, Lung, and Blood Institute
National Cancer Institute
Subject
Clinical Biochemistry,Biochemistry,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献