DNA methylation‐based age prediction with bloodstains using pyrosequencing and random forest regression

Author:

Yang Fenglong1ORCID,Qian Jialin2,Qu Hongzhu3,Ji Zhimin1,Li Junli1,Hu Wenjing1,Cheng Feng1ORCID,Fang Xiangdong3,Yan Jiangwei1

Affiliation:

1. School of Forensic Medicine Shanxi Medical University Shanxi P. R. China

2. Beijing Center for Physical and Chemical Analysis Beijing P. R. China

3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics Chinese Academy of Sciences/China National Center for Bioinformation Beijing P. R. China

Abstract

AbstractThe use of DNA methylation to predict chronological age has shown promising potential for obtaining additional information in forensic investigations. To date, several studies have reported age prediction models based on DNA methylation in body fluids with high DNA content. However, it is often difficult to apply these existing methods in practice due to the low amount of DNA present in stains of body fluids that are part of a trace material. In this study, we present a sensitive and rapid test for age prediction with bloodstains based on pyrosequencing and random forest regression. This assay requires only 0.1 ng of genomic DNA and the entire procedure can be completed within 10 h, making it practical for forensic investigations that require a short turnaround time. We examined the methylation levels of 46 CpG sites from six genes using bloodstain samples from 128 males and 113 females aged 10–79 years. A random forest regression model was then used to construct an age prediction model for males and females separately. The final age prediction models were developed with seven CpG sites (three for males and four for females) based on the performance of the random forest regression. The mean absolute deviation was less than 3 years for each model. Our results demonstrate that DNA methylation‐based age prediction using pyrosequencing and random forest regression has potential applications in forensics to accurately predict the biological age of a bloodstain donor.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Clinical Biochemistry,Biochemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3