Investigating the compatibility of an irrigation decision support system with water rights and allocation in a selected irrigation network

Author:

Dehghanisanij Hossein1,Emami Somayeh2,Nourjou Amir1,Rezaverdinejad Vahid3ORCID

Affiliation:

1. Agricultural Research, Education and Extension Organization Agricultural Engineering Research Institute Karaj Alborz Iran

2. Department of Water Engineering University of Tabriz Tabriz Iran

3. Department of Water Engineering Urmia University Urmia Iran

Abstract

AbstractIt is necessary to use different planning models, including decision support systems (DSSs), to allocate water resources. For this purpose, in this study, an irrigation decision support system (IDSS) was developed to improve irrigation management in the farming fields of Mahabad Plain located to the south‐east of Lake Urmia. Next, the compatibility of the IDSS with the conditions of the Mahabad irrigation and drainage network, water and soil resources, meteorological data and soil moisture (SM) were investigated. The statistical indices of coefficient of determination (R2), root mean square error (RMSE), normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency (EF) and Wilmot agreement (d) were used to evaluate the adaptability of the IDSS. The results showed that the IDSS has reasonable compatibility with soil and water resources, crop yield and meteorological data. Irrigation scheduling provided by the IDSS led to a 13.9% reduction in water consumption and a 6.7% increase in crop yield. The IDSS estimated minimum and maximum temperature and sunshine hours to a satisfactory degree and relative humidity with an acceptable degree (NRMSE = 0.72–0.77) compared to regional synoptic station data. The performance of the IDSS in simulating SM is ranked from good to well (NRMSE = 0.75–0.83). The results indicate that the IDSS has a sufficient performance in estimating meteorological and soil moisture data with R2 = 0.90, RMSE = 4.65, NRMSE = 0.78, EF = 0.76 and d = 0.80. In addition, the IDSS provides the optimal irrigation schedule by considering the ability to deliver water from the irrigation and drainage network to the third‐grade canal and agricultural fields as the upstream condition.

Publisher

Wiley

Reference59 articles.

1. Developing an operational water resources decision support system for zarrineh‐rood basin with emphasis on supply urmia lake water requirement and optimal water allocation in agricultural sector;Abbasi A.;Iran‐Water Resources Research,2015

2. Aliyari H.(2013)Management of groundwater resources based on decision support system. Master's thesis Faculty of Agriculture and Natural Resources University of Tehran.

3. Developing a semi‐distributed decision support system for great Karun water resources system;Ashrafi S.M.;Journal of Applied Research in Water and Wastewater,2019

4. A decision support system for the technical sustainability assessment of water distribution systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3