Preparation of luminescent polyethylene plastic composite nano‐reinforced with glass fibers

Author:

El‐Newehy Mohamed H.1ORCID,Thamer Badr M.1,Abdulhameed Meera Moydeen1

Affiliation:

1. Department of Chemistry, College of Science King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia

Abstract

AbstractElectrospun glass nanofibers (EGNFs) were prepared to reinforce polyethylene (PE) plastic waste towards the development of photochromic anti‐counterfeiting patterns and long‐persistent photoluminescent materials, such as smart windows and concrete. By physical integration of lanthanide‐doped aluminate (LdA) nanoparticles (NPs) into polyethylene plastic reinforced with EGNFs, a transparent lanthanide‐doped aluminate nanoparticles (LdANPs)/EGNFs@PE sheet was produced. The colorless EGNFs@PE hybrids became green under ultraviolet (UV) rays and greenish‐yellow in a darkened room as proved by CIE Lab and photoluminescence analysis. In the luminescent LdANPs/EGNFs@PE hybrids, the identified photochromism was promptly reversed at low concentrations of LdANPs to designate fluorescence emission. Photoluminescence was maintained with slow reversibility for the high phosphor concentrations to designate afterglow emission. LdANPs exhibit diameters of 5–12 nm, whereas glass nanofibers have diameters of 70–120 nm. The morphologies of LdANPs/EGNFs@PE substrates were studied by energy‐dispersive x‐ray spectroscopy (EDX), scanning electron microscopy (SEM), and x‐ray fluorescence (XRF). The mechanical properties of the prepared polyethylene plastic were enhanced by reinforcement with glass nanofibers as a roughening agent. The photoluminescent substrates showed markedly improved scratch resistance in comparison to LdANPs‐free EGNFs@PE substrate. The obtained luminescence spectra displayed an emission band at 519 nm upon excitation at 365 nm. The results demonstrated that the luminous plastic has improved hydrophobicity and UV shielding upon increasing the LdANPs content.

Funder

King Saud University

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3