Chromosome‐scale genome assembly of Poa trivialis and population genomics reveal widespread gene flow in a cool‐season grass seed production system

Author:

Brunharo Caio A. C. G.1ORCID,Benson Christopher W.2,Huff David R.1,Lasky Jesse R.3ORCID

Affiliation:

1. Department of Plant Science The Pennsylvania State University University Park PA USA

2. Department of Molecular Genetics The Ohio State University Columbus OH USA

3. Department of Biology The Pennsylvania State University University Park PA USA

Abstract

AbstractPoa trivialis (L.) is a cool‐season grass species found in various environments worldwide. In addition to being a desired turfgrass species, it is a common weed of agricultural systems and natural areas. As a weed, it is an important contaminant of commercial cool‐season grass seed lots, resulting in widespread gene flow facilitated by human activities and causing significant economic losses to farmers. To better understand and manage infestations, we assembled and annotated a haploid genome of P. trivialis and studied troublesome field populations from Oregon, the largest cool‐season grass seed producing region in the United States. The genome assembly resulted in 1.35 Gb of DNA sequence distributed among seven chromosome‐scale scaffolds, revealing a high content of transposable elements, conserved synteny with Poa annua, and a close relationship with other C3 grasses. A reduced‐representation sequencing analysis of field populations revealed limited genetic diversity and suggested potential gene flow and human‐assisted dispersal in the region. The genetic resources and insights into P. trivialis provided by this study will improve weed management strategies and enable the development of molecular detection tests for contaminated seed lots to limit seed‐mediated gene flow. These resources should also be beneficial for turfgrass breeders seeking to improve desirable traits of commercial P. trivialis varieties and help to guide breeding efforts in other crops to enhance the resiliency of agricultural ecosystems under climate change.Significance Statement:The chromosome‐scale assembly of Poa trivialis and population genomic analyses provide crucial insights into the gene flow of weedy populations in agricultural systems and contribute a valuable genomic resource for the plant science community.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3