A high‐order pure streamfunction method in general curvilinear coordinates for unsteady incompressible viscous flow with complex geometry

Author:

Wang Bo1,Yu Peixiang12ORCID,Tong Xin1,Ouyang Hua12

Affiliation:

1. School of Mechanical Engineering Shanghai Jiao Tong University Shanghai China

2. Engineering Research Center of Gas Turbine and Civil Aero Engine Ministry of Education Shanghai China

Abstract

AbstractIn this paper, a high‐order compact finite difference method in general curvilinear coordinates is proposed for solving unsteady incompressible Navier‐Stokes equations. By constructing the fourth‐order spatial discretization schemes for all partial derivative terms of the pure streamfunction formulation in general curvilinear coordinates, especially for the fourth‐order mixed derivative terms, and applying a Crank‐Nicolson scheme for the second‐order temporal discretization, we extend the unsteady high‐order pure streamfunction algorithm to flow problems with more general non‐conformal grids. Furthermore, the stability of the newly proposed method for the linear model is validated by von‐Neumann linear stability analysis. Five numerical experiments are conducted to verify the accuracy and robustness of the proposed method. The results show that our method not only effectively solves problems with non‐conformal grids, but also allows grid generation and local refinement using commercial software. The solutions are in good agreement with the established numerical and experimental results.

Funder

National Science and Technology Major Project

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3