An adaptive modeling for bifacial solar module levelized cost and performance analysis for mining application

Author:

Kumar Bojja Shiva1,Kunar B. M.1,Murthy Ch. S. N.1

Affiliation:

1. National Institute of Technology Karnataka Surathkal India

Abstract

AbstractPower density and efficiency typically dominate design approaches for power electronics. However, cost optimality is in no way guaranteed by these strategies. A design framework that minimizes the (i) levelized cost of electricity (LCOE), (ii) collection of light, and (iii) irradiance of the generation system is proposed as a solution to this flaw. From an improvement of the swarm behavior optimization model to get a minimum LCOE of solar panel, we design to optimize height, tilt angle, azimuth angle, and some parameters to solve the objective function and LCOE improvement problem to obtain the optimal design problem. In adaptive salp swarm optimization (ASSO), this change's proposed model producer swarm behavior is regarded as an adaptive process that keeps the algorithm from prematurely converging during exploration. The proposed algorithm's performance was confirmed using benchmark test functions, and the results were compared with those of the salp swarm optimization (SSO) and other efficient optimization algorithms. LCOE condition as far as “land‐related cost” and “module‐related cost” demonstrates that the optimal design of bifacial farms is determined by the interaction of these parameters. This proposed model can be used to evaluate visibility on building surfaces that are suitable for mining applications like crushing. Experimentation results show Minimum LCOE AS 0.05 (€/Kw)minimum irradiance and collection light as 336.23(w/m2) and 83.02%n proposed framework model. The swarm optimization method is contrasted with the optimal parameters derived from a conventional solver.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3