Liquid encapsulation in a freezing sessile drop

Author:

Lyu Sijia1ORCID,Zhu Xun1,Legendre Dominique2,Sun Chao13

Affiliation:

1. Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering Tsinghua University Beijing China

2. Institut de Mécanique des Fluides de Toulouse (IMFT) Université de Toulouse CNRS‐Toulouse France

3. Department of Engineering Mechanics, School of Aerospace Engineering Tsinghua University Beijing China

Abstract

AbstractDuring the solidification of a sessile drop, the effect of heat exchange from the gaseous environmental medium is generally ignored. However, by combining experimental observations, direct numerical simulations, and a theoretical model, we have demonstrated that the environmental medium, particularly one with high thermal conductivity such as a liquid, has nonnegligible heat exchange with both the drop and the substrate, leading to accelerated cooling of the outer surface of the sessile drop. Consequently, it causes alterations in the geometry of the freezing front and ultimately results in the formation of a solidified shell that encloses the drop. Furthermore, the encapsulated liquid continues to solidify, which induces volume change and consequently changes the final outcome of the freezing process. This study highlights the importance of considering the properties of the environmental medium and provides novel strategies to manipulate the freezing rate and reshape the morphology of the solidified drop.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3