Can simple ‘molecular’ corrections outperform projector augmented‐wave density functional theory in the prediction of 35Cl electric field gradient tensor parameters for chlorine‐containing crystalline systems?

Author:

Widdifield Cory M.1ORCID,Zakeri Fatemeh1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of Regina Regina Saskatchewan Canada

Abstract

AbstractMany‐body expansion (MBE) fragment approaches have been applied to accurately compute nuclear magnetic resonance (NMR) parameters in crystalline systems. Recent examples demonstrate that electric field gradient (EFG) tensor parameters can be accurately calculated for 14N and 17O. A key additional development is the simple molecular correction (SMC) approach, which uses two one‐body fragment (i.e., isolated molecule) calculations to adjust NMR parameter values established using ‘benchmark’ projector augmented‐wave (PAW) density functional theory (DFT) values. Here, we apply a SMC using the hybrid PBE0 exchange‐correlation (XC) functional to see if this can improve the accuracy of calculated 35Cl EFG tensor parameters. We selected eight organic and two inorganic crystal structures and considered 15 chlorine sites. We find that this SMC improves the accuracy of computed values for both the 35Cl quadrupolar coupling constant (CQ) and the asymmetry parameter ( ) by approximately 30% compared with benchmark PAW DFT values. We also assessed a SMC that offers local improvements not only in terms of the quality of the XC functional but simultaneously in the quality of the description of relativistic effects via the inclusion of spin–orbit effects. As the inorganic systems considered contain heavy atoms bonded to the chlorine atoms, we find further improvements in the accuracy of calculated 35Cl EFG tensor parameters when both a hybrid functional and spin–orbit effects are included in the SMC. On the contrary, for chlorine‐containing organics, the inclusion of spin–orbit relativistic effects using a SMC does not improve the accuracy of computed 35Cl EFG tensor parameters.

Funder

Natural Sciences and Engineering Research Council of Canada

Alliance de recherche numérique du Canada

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3