Affiliation:
1. Mechanical Engineering Department Thapar Institute of Engineering and Technology Patiala Patiala India
Abstract
AbstractLocking bone plates (LoBPs) are utilized in orthopedic surgeries for supporting segments of distal ulna fracture. Primarily constructed from metallic biomaterials that are much stiffer than natural bone, LoBPs result in stress shielding and are prone to corrosion. As a result, there has been a growing preference for biocompatible and biodegradable polymeric biomaterials for creating patient‐specific implants using 3D printing. Among various biomaterials, poly(lactic acid) (PLA) stands out due to its favorable biocompatibility and biodegradability. The layer‐by‐layer deposition in this process raises issues about layer bonding, reducing the mechanical strength of the implants. Nevertheless, adjusting process parameters can enhance the mechanical strength of the produced parts. The current study aimed to examine the influence of printing parameters on the impact strength and torque withstanding ability of biocompatible and biodegradable PLA‐based LoBPs using response surface methodology. The experimental results reveal that an increase in infill density and wall thickness minimize porosity and enhance inter‐layer bonding, imparting high impact and torsional resistance against forces. Conversely, an increase in layer height and printing speed induces porosity, leading to early fracture of layers under sudden impact and torsional forces. The fractured surface morphology of LoBPs after impact and torsional testing was analyzed using SEM. The MATLAB‐based optimization yielded maximum impact strength and torque values of 27.175 kJ m−2 and 3644 N mm, respectively. The study underscores the potential of biocompatible and biodegradable PLA‐based 3D‐printed LoBPs for sustainable integration into biomedical applications. © 2024 Society of Chemical Industry.