Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network

Author:

Yin Ming1,Lu Feiya2,Zhuo Xingxuan3,Yao Wangzi1,Liu Jialong1,Jiang Jijiao4ORCID

Affiliation:

1. School of Software Northwestern Polytechnical University Xi'an China

2. AVIC Xi'an Aeronautics Computing Technique Research Institute Xi'an China

3. School of Economics and Management Fuzhou University Fuzhou China

4. School of Management Northwestern Polytechnical University Xi'an China

Abstract

AbstractHistorical tourism volume, search engine data, and weather calendar data have close causal relationship with daily tourism volume. However, when used in the prediction of daily tourism volume, the feature variables of the huge and complex search engine data do not have strong independence. These repetitive and highly relevant data must be analyzed and selected; otherwise, they will increase the training burden of neural network and reduce the prediction effect. This study proposes a daily tourism volume prediction model, maximum correlation minimum redundancy feature selection and long short‐term memory, on the basis of feature selection and deep learning. Firstly, the multivariate high‐dimensional features, including search engine data and weather factors, are selected to identify the key influencing factors. Secondly, the deep neural network is used to make a multistep forward rolling prediction of daily tourism volume. Results show that keywords of famous scenic spots, weather, historical tourism volume, and tourism strategies in the search engine data significantly improve the prediction accuracy of daily tourism volume. The proposed maximum correlation minimum redundancy feature selection and long short‐term memory model performs better than other models, such as autoregressive integrated moving average, multiple regression, support vector machine, and long short‐term memory.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3