Affiliation:
1. College of Materials Science and Engineering Guilin University of Technology (GUT) Guilin China
2. Department of Research and Development China Antimony Corporation Nanning China
Abstract
AbstractEnhancing the flame retardancy with minimal impact on the mechanical and thermal performances of polymers remains a challenge. This study synthesized a phosphorus/nitrogen‐containing silane compound (D) using polyformaldehyde, KH‐550, and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) as raw materials through the Kabachnik‐Fields reaction. After that, D was grafted onto the surface of graphene after hydrothermal treatment to obtain a nano hybrid flame retardant (D‐GR). And D‐GR/EP composites exhibited good flame resistance (LOI = 30.1% and UL‐94 reaches the V‐1 rating) even if the load on D‐GR was 1 wt%. Indeed, the total heat release, the peak heat release rate (PHRR), and the total smoke release of 1% D‐GR/EP dropped by 13.54%, 28.62%, and 44.32%, respectively, in comparison to pure EP. The mechanical performance of 1% D‐GR/EP was effectively maintained, as indicated by the results of impact, tensile and flexural tests. A systematic evaluation indicated that the accession of D‐GR effectively inhibited smoke and heat releases that are ascribed to the synergistic effect of phosphorus/nitrogen‐containing silane compound and graphene. In this study, a facile method was provided for the synthesis of halogen‐free flame‐retardant epoxy composites with superior performances. The combustion products of the as‐prepared composites complied with green and environmental protection standards.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangxi Province
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献