Neural network‐based optical flow versus traditional optical flow techniques with thermal aerial imaging in real‐world settings

Author:

Nguyen Tran Xuan Bach1ORCID,Rosser Kent12ORCID,Perera Asanka3,Moss Philip2,Chahl Javaan1

Affiliation:

1. University of South Australia Mawson Lake South Australia Australia

2. Defence Science and Technology Group Edinburgh South Australia Australia

3. University of New South Wales Canberra Australian Capital Territory Australia

Abstract

AbstractThe study explores the feasibility of optical flow‐based neural network from real‐world thermal aerial imagery. While traditional optical flow techniques have shown adequate performance, sparse techniques do not work well during cold‐soaked low‐contrast conditions, and dense algorithms are more accurate in low‐contrast conditions but suffer from the aperture problem in some scenes. On the other hand, optical flow from convolutional neural networks has demonstrated good performance with strong generalization from several synthetic public data set benchmarks. Ground truth was generated from real‐world thermal data estimated with traditional dense optical flow techniques. The state‐of‐the‐art Recurrent All‐Pairs Field Transform for the Optical Flow model was trained with both color synthetic data and the captured real‐world thermal data across various thermal contrast conditions. The results showed strong performance of the deep‐learning network against established sparse and dense optical flow techniques in various environments and weather conditions, at the cost of higher computational demand.

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3