Affiliation:
1. State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
2. Max Planck‐Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff UK
3. Department of Chemical Engineering Norwegian University of Science and Technology Trondheim Norway
Abstract
AbstractTitanosilicate with H2O2 stands out as a highly consequential oxidized catalytic system, prized for its user‐friendly operation, mild conditions, and eco‐friendly attributes. However, a synthesis strategy for large surface area titanosilicalites approaching the theoretical lowest Si/Ti ratio without extra‐framework Ti species remains an ongoing challenge. In this study, we successfully synthesized single‐crystalline Ti‐rich nanosized aggregated TS‐1 by shielding effect with a Si/Ti polymer. This polymer demonstrated effectiveness in restraining TiO2 species by regulating the proximity of Si/Ti species in Ti‐Diol‐Si polymers. The polymer not only facilitated the synthesis of single‐crystalline Ti‐rich TS‐1 but also exploited the chain length of PEG, functioning as a shielding cage by hydrogen bonds, to synthesize nanosized aggregated TS‐1 (TS‐1‐PEG400). This TS‐1‐PEG400 exhibited superior conversion (~60%), selectivity (~90%), and stability in 1‐hexene epoxidation. This study not only establishes a synthesis pathway for Ti‐rich TS‐1 but also holds the potential to enhance related industrial oxidation reactions involving titanosilicates and H2O2.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities