Supply responsive scheduling for ethylene cracking furnace systems based on deep reinforcement learning

Author:

Li Haoran12ORCID,Qiu Tong12ORCID

Affiliation:

1. Institute of Process Systems Engineering, Department of Chemical Engineering Tsinghua University Beijing China

2. Beijing Key Laboratory of Industrial Big Data System and Application Tsinghua University Beijing China

Abstract

AbstractEthylene is one of the most important chemicals, and scheduling optimization is crucial for the profitability of ethylene cracking furnace systems. With the diversification of feedstocks and the high variability in prices, supply chain fluctuations pose significant challenges to the scheduling decisions. Dynamically responding to these fluctuations has become crucial. Traditional mixed integer nonlinear programming (MINLP) models lack the capability of supply chain response, while receding horizon optimization (RHO) models require parameter prediction and repeated optimization solving. To address this challenge, we propose a deep reinforcement learning‐based framework that includes an ethylene dynamic scheduling environment and a decision agent based on deep Q‐network. Across three test cases, compared to the MINLP and RHO models, this framework significantly minimizes losses caused by supply chain fluctuations, thereby increasing daily average net profits by 9%–27%, demonstrating its significant potential for application in responsive scheduling in the presence of supply chain fluctuations.

Funder

National Science and Technology Major Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3