Shaking table test of a 10‐story self‐centering tube building

Author:

Song Zhaoyang1ORCID,Zhou Ying1ORCID,Lu Yiqiu1ORCID

Affiliation:

1. State Key Laboratory of Disaster Reduction in Civil Engineering Tongji University Shanghai China

Abstract

AbstractThe severe damage of conventionally designed buildings and consequent socioeconomic impacts after major seismic events have spurred the development of self‐centering systems with high seismic resilience. Post‐tensioned (PT) walls with rocking interfaces allowed to open and close and unbonded PT bars that provide most of the re‐centering ability have been developed extensively as a promising self‐centering technology. Aiming at providing essential insights into the seismic performance of self‐centering tube systems, a 1/6‐scale ten‐story self‐centering tube building was designed, constructed, and tested on a shaking table subjected to a series of unidirectional and bidirectional ground motions with increasing intensities. The test building consisted of a self‐centering tube that included four PT walls and provided the primary lateral force resistance in both directions, a perimeter rocking frame that was designed mainly to carry gravity loads, and particular connections with slots to accommodate the potential displacement incompatibility among the PT walls and surrounding components. The experimental results indicated the excellent seismic performance of the test building that had reliable structural integrity and experienced only confined damage even when subjected to extremely high intensities. The building also exhibited satisfactory re‐centering ability with minimal residual deformations at the conclusion of testing. It was demonstrated that the self‐centering tube system is a desirable low‐damage alternative to traditional tube systems in earthquake‐prone regions. The benchmark data from this test provided unique suggestions and support for further research on the design methods, numerical modeling, and experimental testing of self‐centering tube systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3