Towards hybrid technical learning: Transforming traditional Laboratories for distance learning

Author:

Abekiri Najib1ORCID,Ajaamoum Mohammed1,Rachdy Azzedine1,Nassiri Boujemaa2,Benydir Mohamed1

Affiliation:

1. Laboratory of Engineering Sciences and Energy Management (LASIME) Ibn Zohr University—ENSA Agadir Morocco

2. InterDisciplinary Applied Research Laboratory (LIDRA) International University of Agadir—Universiapolis Agadir Morocco

Abstract

AbstractThe rise in the number of students pursuing scientific and technical fields, along with the constraints of physical infrastructure and the difficulties posed by the COVID‐19 pandemic, has led to a reassessment of conventional laboratory learning. The shift towards virtual or remote laboratories is not only a response to these challenges but also a chance to enhance educational methodologies in science and engineering. This study aims to develop and evaluate a method for transforming traditional laboratories into distance laboratories for science and engineering education. The focus is on optimizing existing laboratory equipment and integrating low‐cost IoT solutions to facilitate distance experiments while adopting a hybrid learning approach. This approach seamlessly integrates theory, simulations, remote experiments, and reflective activities. The study analyzed a diverse group of students from the electrical engineering discipline, evaluating their engagement, motivation, and learning outcomes. The preliminary results suggest an increase in student motivation and engagement, demonstrating improved analytical capacity and a more comprehensive understanding of experimental concepts. The implementation of IoT solutions in traditional laboratories can transform them into hybrid learning environments. This integration of practical and digital methods can address challenges and improve learning experiences. It emphasizes the importance of evolving teaching practices to engage and motivate students in the digital era.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3