Affiliation:
1. Federal University of São Paulo (UNIFESP), Department of Science and Technology Polymer and Biopolymer Technology Laboratory (TecPBio) São José dos Campos Brazil
2. Federal University of São Carlos (UFSCar) Department of Materials Engineering São Carlos Brazil
3. National Space Research Institute (INPE) Coordination of Applied Research and Technological Development (COPDT) São José dos Campos Brazil
Abstract
AbstractPolypropylene (PP)/talc composites are used extensively in the automotive, aeronautical, and consumer goods industries; however, the increasing demand for more efficient, safe, and less environmentally impact materials makes it necessary to include new reinforcements. In this way, the use of graphene nanoplates (GNP) is a good alternative because this carbon‐based material allows the achievement of new multifunctional nanocomposites with improved properties and process optimization. In this work, PP/talc (80/20) composites were prepared with the addition of 1, 3, 5, and 7 wt% of GNP using the extrusion process and injection molding. Morphological, thermal, rheological, mechanical, electrical, and electromagnetic characterizations were performed. The addition of GNPs led to a linear reduction in the melt flow index (MFI) of the samples. A rheological percolation was observed in the sample with the addition of 7 wt% of GNP. The addition of 5 and 7 wt% of GNP led to significant increases in elastic modulus and Shore D hardness. The electrical and electromagnetic evaluation showed that the increase of GNP in the compositions contributed to improvements in electrical conductivity and permittivity, resulting in a proportional increment in the total attenuation component (SET).
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献