Optimizing carbon capture efficiency with direct capturing and amine: Insights from exegetic analysis

Author:

Majnoon Ali1,Moosavian Seyed Farhan1ORCID,Hajinezhad Ahmad1ORCID

Affiliation:

1. Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies University of Tehran Tehran Iran

Abstract

AbstractWith climate change concerns on the rise, finding efficient and sustainable ways to separate carbon dioxide from industrial gas mixtures has become increasingly important. Membrane‐based gas separation technologies offer a promising solution due to their low energy consumption, low emissions, and ease of operation. In this study, we dug deep into theoretical energy consumption and practical optimization strategies for CO2 separation using such technologies. Our results showed that CO2 separation can be achieved with relatively low specific energy consumption, ranging from 0.09 to 0.27 MJe/kg CO2, depending on feed CO2 concentration. By conducting process simulations, we determined the optimal feed gas pressure and membrane surface area required to achieve a CO2 absorption ratio of 90% (mol). We also analyzed the effects of CO2 permeation and selectivity on energy consumption and membrane area, revealing that increasing both can significantly reduce energy consumption, albeit with more membrane surface area required. Using seepage flow circulation was found to be a particularly effective way to improve feed CO2 concentration and reduce energy consumption. To optimize and improve the capturing process, we conducted exergy analysis in each of the five stages of optimization, reporting Cooling Utilities (MW), Heating Utilities (MW), and Total Utilities (MW) for each step. Our results showed that in the optimal mode, Total Utilities (MW) were reported as 228.1, highlighting the potential of membrane‐based CO2 separation for carbon capture and storage applications. This study provides valuable insights and practical strategies for achieving efficient and sustainable CO2 separation.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3