Study on improving liquid carrying performance of annular jet pump gas well with static mixer

Author:

Liang Huizhen1ORCID,Li Chengzhen1,Ma Jian1,Mu Lin1,Jiang Xiukun1

Affiliation:

1. College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao China

Abstract

AbstractIn the process of natural gas extraction, the phenomenon of liquid loading will affect the efficiency of gas well extraction and reduce the life of the well. Compared with conventional drainage gas extraction technology, the jet pump can not only reduce the bottom back pressure and ensure the stable production of gas reservoirs but also promote the final recovery rate. Since the jet pump relies on the interaction between fluid particles to transfer energy, the energy loss is large and the efficiency is low. To maximize the advantages of the gas‐driven jet pump, this study innovatively combines a static mixer with an annular jet pump. Utilizing the cyclonic effect produced by the static mixer, the original gas‐liquid axial motion is transformed into a stronger vortex motion, and the liquid droplets are changed into a liquid film that is easier to carry, which significantly improves the discharge efficiency of the jet pump. This study uses a combination of numerical simulation and experimental analysis to compare the associated effects of the new annular jet pump (NAJP) and the conventional annular jet pump (CAJP) on the liquid‐carrying performance of gas wells in terms of cyclonic effect, droplet breakage ratio, and pump efficiency. The results show that, compared with CAJP, NAJP increases the mass flow rate of the sucked fluid. The droplet breakage ratio increases by 15.4% year‐on‐year, while the critical liquid‐carrying flow rate is reduced by about 10.7%, resulting in a maximum pumping efficiency of 37%, an increase of about 30.7% year‐on‐year. At the same time, the reduction of the energy coefficient means lower energy consumption. In summary, NAJP is better than CAJP in terms of liquid‐carrying effect and efficiency.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3