Nontarget‐site resistance due to rapid physiological response in 2,4‐D resistant Conyza sumatrensis: reduced 2,4‐D translocation and auxin‐induced gene expression

Author:

Souza Amanda dos Santos1ORCID,Leal Jessica Ferreira Lourenço1ORCID,Montgomery Jacob Samuel2,Ortiz Mirella Farinelli2ORCID,Simões Araujo André Lucas1,Morran Sarah2,de Figueiredo Marcelo Rodrigues Alves2,Langaro Ana Claudia1ORCID,Zobiole Luiz Henrique Saes3ORCID,Nissen Scott Jay2,Gaines Todd Adam2ORCID,de Pinho Camila Ferreira1ORCID

Affiliation:

1. Federal Rural University of Rio de Janeiro Department of Crop Seropédica Brazil

2. Colorado State University Department of Agricultural Biology Fort Collins Colorado USA

3. Corteva Agriscience Field Scientist São Paulo Brazil

Abstract

AbstractBackgroundResistance to 2,4‐Dichlorophenoxyacetic acid (2,4‐D) has been reported in several weed species since the 1950s; however, a biotype of Conyza sumatrensis showing a novel physiology of the rapid response minutes after herbicide application was reported in 2017. The objective of this research was to investigate the mechanisms of resistance and identify transcripts associated with the rapid physiological response of C. sumatrensis to 2,4‐D herbicide.ResultsDifferences were found in 2,4‐D absorption between the resistant and susceptible biotypes. Herbicide translocation was reduced in the resistant biotype compared to the susceptible. In resistant plants 98.8% of [14C] 2,4‐D was found in the treated leaf, whereas ≈13% translocated to other plant parts in the susceptible biotype at 96 h after treatment. Resistant plants did not metabolize [14C] 2,4‐D and had only intact [14C] 2,4‐D at 96 h after application, whereas susceptible plants metabolized [14C] 2,4‐D into four detected metabolites, consistent with reversible conjugation metabolites found in other 2,4‐D sensitive plant species. Pre‐treatment with the cytochrome P450 inhibitor malathion did not enhance 2,4‐D sensitivity in either biotype. Following treatment with 2,4‐D, resistant plants showed increased expression of transcripts within plant defense response and hypersensitivity pathways, whereas both sensitive and resistant plants showed increased expression of auxin‐response transcripts.ConclusionOur results demonstrate that reduced 2,4‐D translocation contributes to resistance in the C. sumatrensis biotype. The reduction in 2,4‐D transport is likely to be a consequence of the rapid physiological response to 2,4‐D in resistant C. sumatrensis. Resistant plants had increased expression of auxin‐responsive transcripts, indicating that a target‐site mechanism is unlikely. © 2023 Society of Chemical Industry.

Funder

Colorado State University

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Corteva Agriscience

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3